107 research outputs found

    PyHST2: an hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities

    Full text link
    We present the PyHST2 code which is in service at ESRF for phase-contrast and absorption tomography. This code has been engineered to sustain the high data flow typical of the third generation synchrotron facilities (10 terabytes per experiment) by adopting a distributed and pipelined architecture. The code implements, beside a default filtered backprojection reconstruction, iterative reconstruction techniques with a-priori knowledge. These latter are used to improve the reconstruction quality or in order to reduce the required data volume and reach a given quality goal. The implemented a-priori knowledge techniques are based on the total variation penalisation and a new recently found convex functional which is based on overlapping patches. We give details of the different methods and their implementations while the code is distributed under free license. We provide methods for estimating, in the absence of ground-truth data, the optimal parameters values for a-priori techniques

    Co-evolutionary Hybrid Bi-level Optimization

    Get PDF
    Multi-level optimization stems from the need to tackle complex problems involving multiple decision makers. Two-level optimization, referred as ``Bi-level optimization'', occurs when two decision makers only control part of the decision variables but impact each other (e.g., objective value, feasibility). Bi-level problems are sequential by nature and can be represented as nested optimization problems in which one problem (the ``upper-level'') is constrained by another one (the ``lower-level''). The nested structure is a real obstacle that can be highly time consuming when the lower-level is NP−hard\mathcal{NP}-hard. Consequently, classical nested optimization should be avoided. Some surrogate-based approaches have been proposed to approximate the lower-level objective value function (or variables) to reduce the number of times the lower-level is globally optimized. Unfortunately, such a methodology is not applicable for large-scale and combinatorial bi-level problems. After a deep study of theoretical properties and a survey of the existing applications being bi-level by nature, problems which can benefit from a bi-level reformulation are investigated. A first contribution of this work has been to propose a novel bi-level clustering approach. Extending the well-know ``uncapacitated k-median problem'', it has been shown that clustering can be easily modeled as a two-level optimization problem using decomposition techniques. The resulting two-level problem is then turned into a bi-level problem offering the possibility to combine distance metrics in a hierarchical manner. The novel bi-level clustering problem has a very interesting property that enable us to tackle it with classical nested approaches. Indeed, its lower-level problem can be solved in polynomial time. In cooperation with the Luxembourg Centre for Systems Biomedicine (LCSB), this new clustering model has been applied on real datasets such as disease maps (e.g. Parkinson, Alzheimer). Using a novel hybrid and parallel genetic algorithm as optimization approach, the results obtained after a campaign of experiments have the ability to produce new knowledge compared to classical clustering techniques combining distance metrics in a classical manner. The previous bi-level clustering model has the advantage that the lower-level can be solved in polynomial time although the global problem is by definition NP\mathcal{NP}-hard. Therefore, next investigations have been undertaken to tackle more general bi-level problems in which the lower-level problem does not present any specific advantageous properties. Since the lower-level problem can be very expensive to solve, the focus has been turned to surrogate-based approaches and hyper-parameter optimization techniques with the aim of approximating the lower-level problem and reduce the number of global lower-level optimizations. Adapting the well-know bayesian optimization algorithm to solve general bi-level problems, the expensive lower-level optimizations have been dramatically reduced while obtaining very accurate solutions. The resulting solutions and the number of spared lower-level optimizations have been compared to the bi-level evolutionary algorithm based on quadratic approximations (BLEAQ) results after a campaign of experiments on official bi-level benchmarks. Although both approaches are very accurate, the bi-level bayesian version required less lower-level objective function calls. Surrogate-based approaches are restricted to small-scale and continuous bi-level problems although many real applications are combinatorial by nature. As for continuous problems, a study has been performed to apply some machine learning strategies. Instead of approximating the lower-level solution value, new approximation algorithms for the discrete/combinatorial case have been designed. Using the principle employed in GP hyper-heuristics, heuristics are trained in order to tackle efficiently the NP−hard\mathcal{NP}-hard lower-level of bi-level problems. This automatic generation of heuristics permits to break the nested structure into two separated phases: \emph{training lower-level heuristics} and \emph{solving the upper-level problem with the new heuristics}. At this occasion, a second modeling contribution has been introduced through a novel large-scale and mixed-integer bi-level problem dealing with pricing in the cloud, i.e., the Bi-level Cloud Pricing Optimization Problem (BCPOP). After a series of experiments that consisted in training heuristics on various lower-level instances of the BCPOP and using them to tackle the bi-level problem itself, the obtained results are compared to the ``cooperative coevolutionary algorithm for bi-level optimization'' (COBRA). Although training heuristics enables to \emph{break the nested structure}, a two phase optimization is still required. Therefore, the emphasis has been put on training heuristics while optimizing the upper-level problem using competitive co-evolution. Instead of adopting the classical decomposition scheme as done by COBRA which suffers from the strong epistatic links between lower-level and upper-level variables, co-evolving the solution and the mean to get to it can cope with these epistatic link issues. The ``CARBON'' algorithm developed in this thesis is a competitive and hybrid co-evolutionary algorithm designed for this purpose. In order to validate the potential of CARBON, numerical experiments have been designed and results have been compared to state-of-the-art algorithms. These results demonstrate that ``CARBON'' makes possible to address nested optimization efficiently

    Challenges in Automatic Software Optimisation: the energy efficiency case

    Get PDF
    ith the advent of the Exascale capability allowing supercomputers to perform at least 1018 IEEE 754 Double Precision (64 bits) operations per second, many concerns have been raised regarding the energy consumption of high-performance computing code. Recently, Frontier operated by the Oak Ridge National Laboratory, has become the first supercomputer to break the exascale barrier [1]. In total, Frontier contains 9,408 CPUs, 37,632 GPUs, and 8,730,112 cores. This world-leading supercomputer consumes about 21 megawatts which is truly remarkable as Frontier was also ranked first on the Green500 list before being recently replaced. The previous top Green500 machine, MN-3 in Japan, provided 39.38 gigaflops per watt, while the Frontier delivered 62.68 gigaflops per watt. All these infrastructure and hardware improvements are just the tip of the Iceberg. Energy-aware code is now required to minimize the energy consumption of distributed and/or multi-threaded software. For example, the data movement bottleneck is responsible for 35 − 60% of a system’s energy consumption during intra-node communication. In an HPC environment, additional energy is consumed through inter-node communication. This position paper aims to introduce future research directions to enter now in the age of energy-aware software. The paper is organized as follows. First, we introduce related works regarding measurement and energy optimisation. Then we propose to focus on the two different levels of granularity in energy optimisation

    Evolving a Deep Neural Network Training Time Estimator

    Get PDF
    We present a procedure for the design of a Deep Neural Net- work (DNN) that estimates the execution time for training a deep neural network per batch on GPU accelerators. The estimator is destined to be embedded in the scheduler of a shared GPU infrastructure, capable of providing estimated training times for a wide range of network architectures, when the user submits a training job. To this end, a very short and simple representation for a given DNN is chosen. In order to compensate for the limited degree of description of the basic network representation, a novel co-evolutionary approach is taken to fit the estimator. The training set for the estimator, i.e. DNNs, is evolved by an evolutionary algorithm that optimizes the accuracy of the estimator. In the process, the genetic algorithm evolves DNNs, generates Python-Keras programs and projects them onto the simple representation. The genetic operators are dynamic, they change with the estimator’s accuracy in order to balance accuracy with generalization. Results show that despite the low degree of information in the representation and the simple initial design for the predictor, co-evolving the training set performs better than near random generated population of DNNs

    Bayesian optimization to enhance coverage performance of a swarm of UAV with chaotic dynamics

    Get PDF
    We introduce the optimization of CACOC through Bayesian Optimization. CACOC is based on a chaotic system, i.e. Rossler system whose behavior can be modified by tuning the α parameter. In order to evaluate the performance of CACOC for different value of α, the coverage metric has to be evaluated after simulation. The latter is time-consuming. Therefore, a surrogate-based optimization, i.e. Bayesian Optimization has been privilegied to tackle this issue. An analysis of the chaotic system with the obtained α value has been performed to compare the periodic orbits and their associated patterns. Numerical results show that the best α value avoid a waste of time in periodic region of the bifurcation diagram. Future works will focus on more complex chaotic system as well as new application domain of the optimized CACOC approach

    An Amyloidogenic Sequence at the N-Terminus of the Androgen Receptor Impacts Polyglutamine Aggregation

    Get PDF
    The human androgen receptor (AR) is a ligand inducible transcription factor that harbors an amino terminal domain (AR-NTD) with a ligand-independent activation function. AR-NTD is intrinsically disordered and displays aggregation properties conferred by the presence of a poly-glutamine (polyQ) sequence. The length of the polyQ sequence as well as its adjacent sequence motifs modulate this aggregation property. AR-NTD also contains a conserved KELCKAVSVSM sequence motif that displays an intrinsic property to form amyloid fibrils under mild oxidative conditions. As peptide sequences with intrinsic oligomerization properties are reported to have an impact on the aggregation of polyQ tracts, we determined the effect of the KELCKAVSVSM on the polyQ stretch in the context of the AR-NTD using atomic force microscopy (AFM). Here, we present evidence for a crosstalk between the amyloidogenic properties of the KELCKAVSVSM motif and the polyQ stretch at the AR-NTD

    Highly dynamic and sex-specific expression of microRNAs during early ES cell differentiation.

    Get PDF
    International audienceEmbryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of the mammalian blastocyst. Cellular differentiation entails loss of pluripotency and gain of lineage-specific characteristics. However, the molecular controls that govern the differentiation process remain poorly understood. We have characterized small RNA expression profiles in differentiating ES cells as a model for early mammalian development. High-throughput 454 pyro-sequencing was performed on 19-30 nt RNAs isolated from undifferentiated male and female ES cells, as well as day 2 and 5 differentiating derivatives. A discrete subset of microRNAs (miRNAs) largely dominated the small RNA repertoire, and the dynamics of their accumulation could be readily used to discriminate pluripotency from early differentiation events. Unsupervised partitioning around meloids (PAM) analysis revealed that differentiating ES cell miRNAs can be divided into three expression clusters with highly contrasted accumulation patterns. PAM analysis afforded an unprecedented level of definition in the temporal fluctuations of individual members of several miRNA genomic clusters. Notably, this unravelled highly complex post-transcriptional regulations of the key pluripotency miR-290 locus, and helped identify miR-293 as a clear outlier within this cluster. Accordingly, the miR-293 seed sequence and its predicted cellular targets differed drastically from those of the other abundant cluster members, suggesting that previous conclusions drawn from whole miR-290 over-expression need to be reconsidered. Our analysis in ES cells also uncovered a striking male-specific enrichment of the miR-302 family, which share the same seed sequence with most miR-290 family members. Accordingly, a miR-302 representative was strongly enriched in embryonic germ cells derived from primordial germ cells of male but not female mouse embryos. Identifying the chromatin remodelling and E2F-dependent transcription repressors Ari4a and Arid4b as additional targets of miR-302 and miR-290 supports and possibly expands a model integrating possible overlapping functions of the two miRNA families in mouse cell totipotency during early development. This study demonstrates that small RNA sampling throughout early ES cell differentiation enables the definition of statistically significant expression patterns for most cellular miRNAs. We have further shown that the transience of some of these miRNA patterns provides highly discriminative markers of particular ES cell states during their differentiation, an approach that might be broadly applicable to the study of early mammalian development

    Deformation-based Morphometry MRI Reveals Brain Structural Modifications in Living Mu Opioid Receptor Knockout Mice

    Get PDF
    Mu opioid receptor (MOR) activation facilitates reward processing and reduces pain, and brain networks underlying these effects are under intense investigation. Mice lacking the MOR gene (MOR KO mice) show lower drug and social reward, enhanced pain sensitivity and altered emotional responses. Our previous neuroimaging analysis using Resting-state (Rs) functional Magnetic Resonance Imaging (fMRI) showed significant alterations of functional connectivity (FC) within reward/aversion networks in these mice, in agreement with their behavioral deficits. Here we further used a structural MRI approach to determine whether volumetric alterations also occur in MOR KO mice. We acquired anatomical images using a 7-Tesla MRI scanner and measured deformation-based morphometry (DBM) for each voxel in subjects from MOR KO and control groups. Our analysis shows marked anatomical differences in mutant animals. We observed both local volumetric contraction (striatum, nucleus accumbens, bed nucleus of the stria terminalis, hippocampus, hypothalamus and periacqueducal gray) and expansion (prefrontal cortex, amygdala, habenula, and periacqueducal gray) at voxel level. Volumetric modifications occurred mainly in MOR-enriched regions and across reward/aversion centers, consistent with our prior FC findings. Specifically, several regions with volume differences corresponded to components showing highest FC changes in our previous Rs-fMRI study, suggesting a possible function-structure relationship in MOR KO-related brain differences. In conclusion, both Rs-fMRI and volumetric MRI in live MOR KO mice concur to disclose functional and structural whole-brain level mechanisms that likely drive MOR-controlled behaviors in animals, and may translate to MOR-associated endophenotypes or disease in humans

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth
    • …
    corecore